Parameterized principal component analysis

نویسندگان

  • Ajay Gupta
  • Adrian Barbu
چکیده

When modeling multivariate data, one might have an extra parameter of contextual information that could be used to treat some observations as more similar to others. For example, images of faces can vary by age, and one would expect the face of a 40 year old to be more similar to the face of a 30 year old than to a baby face. We introduce a novel manifold approximation method, parameterized principal component analysis (PPCA) that models data with linear subspaces that change continuously according to the extra parameter of contextual information (e.g. age), instead of ad-hoc atlases. Special care has been taken in the loss function and the optimization method to encourage smoothly changing subspaces across the parameter values. The approach ensures that each observation’s projection will share information with observations that have similar parameter values, but not with observations that have large parameter differences. We tested PPCA on artificial data based on known, smooth functions of an added parameter, as well as on three real datasets with different types of parameters. We compared PPCA to PCA, sparse PCA and to independent principal component analysis (IPCA), which groups observations by their parameter values and projects each group using PCA with no sharing of information for different groups. PPCA recovers the known functions with less error and projects the datasets’ test set observations with consistently less reconstruction error ∗Corresponding author. Email address: [email protected] (Adrian Barbu) URL: http://ani.stat.fsu.edu/~abarbu/ (Adrian Barbu) Preprint submitted to Pattern Recognition May 4, 2017 ar X iv :1 60 8. 04 69 5v 2 [ cs .C V ] 2 M ay 2 01 7 than IPCA does. In some cases where the manifold is truly nonlinear, PCA outperforms all the other manifold approximation methods compared.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameterized Complexity: A Statistical Approach Combining Factorial Experiments with Principal Component Analysis

The new sort developed by Sundararajan and Chakarborty (2007), a modification of Quick sort that removes the interchanges, considers the first element of the array as pivot element. In this paper the pivot element taken is a randomly selected element of the array. The effect of binomial parameters are examined on the average sorting complexity using Principal Component Analysis approach. An att...

متن کامل

Development of a cell formation heuristic by considering realistic data using principal component analysis and Taguchi’s method

Over the last four decades of research, numerous cell formation algorithms have been developed and tested, still this research remains of interest to this day. Appropriate manufacturing cells formation is the first step in designing a cellular manufacturing system. In cellular manufacturing, consideration to manufacturing flexibility and productionrelated data is vital for cell formation....

متن کامل

Feature reduction of hyperspectral images: Discriminant analysis and the first principal component

When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...

متن کامل

An Empirical Comparison between Grade of Membership and Principal Component Analysis

t is the purpose of this paper to contribute to the discussion initiated byWachter about the parallelism between principal component (PC) and atypological grade of membership (GoM) analysis. The author testedempirically the close relationship between both analysis in a lowdimensional framework comprising up to nine dichotomous variables and twotypologies. Our contribution to the subject is also...

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 78  شماره 

صفحات  -

تاریخ انتشار 2018